Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(6): e2317756121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38300868

ABSTRACT

Fibroblast growth factor receptor (FGFR) kinase inhibitors have been shown to be effective in the treatment of intrahepatic cholangiocarcinoma and other advanced solid tumors harboring FGFR2 alterations, but the toxicity of these drugs frequently leads to dose reduction or interruption of treatment such that maximum efficacy cannot be achieved. The most common adverse effects are hyperphosphatemia caused by FGFR1 inhibition and diarrhea due to FGFR4 inhibition, as current therapies are not selective among the FGFRs. Designing selective inhibitors has proved difficult with conventional approaches because the orthosteric sites of FGFR family members are observed to be highly similar in X-ray structures. In this study, aided by analysis of protein dynamics, we designed a selective, covalent FGFR2 inhibitor. In a key initial step, analysis of long-timescale molecular dynamics simulations of the FGFR1 and FGFR2 kinase domains allowed us to identify differential motion in their P-loops, which are located adjacent to the orthosteric site. Using this insight, we were able to design orthosteric binders that selectively and covalently engage the P-loop of FGFR2. Our drug discovery efforts culminated in the development of lirafugratinib (RLY-4008), a covalent inhibitor of FGFR2 that shows substantial selectivity over FGFR1 (~250-fold) and FGFR4 (~5,000-fold) in vitro, causes tumor regression in multiple FGFR2-altered human xenograft models, and was recently demonstrated to be efficacious in the clinic at doses that do not induce clinically significant hyperphosphatemia or diarrhea.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Hyperphosphatemia , Humans , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/chemistry , Bile Ducts, Intrahepatic/metabolism , Diarrhea , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry
2.
Cancer Discov ; 14(2): 240-257, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37916956

ABSTRACT

PIK3CA (PI3Kα) is a lipid kinase commonly mutated in cancer, including ∼40% of hormone receptor-positive breast cancer. The most frequently observed mutants occur in the kinase and helical domains. Orthosteric PI3Kα inhibitors suffer from poor selectivity leading to undesirable side effects, most prominently hyperglycemia due to inhibition of wild-type (WT) PI3Kα. Here, we used molecular dynamics simulations and cryo-electron microscopy to identify an allosteric network that provides an explanation for how mutations favor PI3Kα activation. A DNA-encoded library screen leveraging electron microscopy-optimized constructs, differential enrichment, and an orthosteric-blocking compound led to the identification of RLY-2608, a first-in-class allosteric mutant-selective inhibitor of PI3Kα. RLY-2608 inhibited tumor growth in PIK3CA-mutant xenograft models with minimal impact on insulin, a marker of dysregulated glucose homeostasis. RLY-2608 elicited objective tumor responses in two patients diagnosed with advanced hormone receptor-positive breast cancer with kinase or helical domain PIK3CA mutations, with no observed WT PI3Kα-related toxicities. SIGNIFICANCE: Treatments for PIK3CA-mutant cancers are limited by toxicities associated with the inhibition of WT PI3Kα. Molecular dynamics, cryo-electron microscopy, and DNA-encoded libraries were used to develop RLY-2608, a first-in-class inhibitor that demonstrates mutant selectivity in patients. This marks the advance of clinical mutant-selective inhibition that overcomes limitations of orthosteric PI3Kα inhibitors. See related commentary by Gong and Vanhaesebroeck, p. 204 . See related article by Varkaris et al., p. 227 . This article is featured in Selected Articles from This Issue, p. 201.


Subject(s)
Breast Neoplasms , Hyperinsulinism , Humans , Female , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Cryoelectron Microscopy , Breast Neoplasms/drug therapy , Class I Phosphatidylinositol 3-Kinases/genetics , Hyperinsulinism/drug therapy , Hyperinsulinism/genetics , DNA
3.
Bioorg Med Chem Lett ; 28(11): 2103-2108, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29709252

ABSTRACT

Recently, the identification of several classes of aryl sulfonamides and acyl sulfonamides that potently inhibit NaV1.7 and demonstrate high levels of selectivity over other NaV isoforms have been reported. The fully ionizable nature of these inhibitors has been shown to be an important part of the pharmacophore for the observed potency and isoform selectivity. The requirement of this functionality, however, has presented challenges associated with optimization toward inhibitors with drug-like properties and minimal off-target activity. In an effort to obviate these challenges, we set out to develop an orally bioavailable, selective NaV1.7 inhibitor, lacking these acidic functional groups. Herein, we report the discovery of a novel series of inhibitors wherein a triazolesulfone has been designed to serve as a bioisostere for the acyl sulfonamide. This work culminated in the delivery of a potent series of inhibitors which demonstrated good levels of selectivity over NaV1.5 and favorable pharmacokinetics in rodents.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel/metabolism , Sulfonamides/pharmacology , Animals , Dose-Response Relationship, Drug , Humans , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Molecular Structure , Rats , Structure-Activity Relationship , Sulfonamides/chemistry
4.
Bioorg Med Chem Lett ; 27(15): 3477-3485, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28629594

ABSTRACT

The voltage-gated sodium channel NaV1.7 has received much attention from the scientific community due to compelling human genetic data linking gain- and loss-of-function mutations to pain phenotypes. Despite this genetic validation of NaV1.7 as a target for pain, high quality pharmacological tools facilitate further understanding of target biology, establishment of target coverage requirements and subsequent progression into the clinic. Within the sulfonamide class of inhibitors, reduced potency on rat NaV1.7 versus human NaV1.7 was observed, rendering in vivo rat pharmacology studies challenging. Herein, we report the discovery and optimization of novel benzoxazine sulfonamide inhibitors of human, rat and mouse NaV1.7 which enabled pharmacological assessment in traditional behavioral rodent models of pain and in turn, established a connection between formalin-induced pain and histamine-induced pruritus in mice. The latter represents a simple and efficient means of measuring target engagement.


Subject(s)
Benzoxazines/chemistry , Benzoxazines/pharmacology , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Sulfonamides/chemistry , Sulfonamides/pharmacology , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/pharmacology , Analgesics/chemistry , Analgesics/pharmacokinetics , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Benzoxazines/pharmacokinetics , Benzoxazines/therapeutic use , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Pain/drug therapy , Pain/metabolism , Rats , Rats, Sprague-Dawley , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use , Voltage-Gated Sodium Channel Blockers/pharmacokinetics , Voltage-Gated Sodium Channel Blockers/therapeutic use
5.
J Med Chem ; 60(14): 5990-6017, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28324649

ABSTRACT

Because of its strong genetic validation, NaV1.7 has attracted significant interest as a target for the treatment of pain. We have previously reported on a number of structurally distinct bicyclic heteroarylsulfonamides as NaV1.7 inhibitors that demonstrate high levels of selectivity over other NaV isoforms. Herein, we report the discovery and optimization of a series of atropisomeric quinolinone sulfonamide inhibitors [ Bicyclic sulfonamide compounds as sodium channel inhibitors and their preparation . WO 2014201206, 2014 ] of NaV1.7, which demonstrate nanomolar inhibition of NaV1.7 and exhibit high levels of selectivity over other sodium channel isoforms. After optimization of metabolic and pharmacokinetic properties, including PXR activation, CYP2C9 inhibition, and CYP3A4 TDI, several compounds were advanced into in vivo target engagement and efficacy models. When tested in mice, compound 39 (AM-0466) demonstrated robust pharmacodynamic activity in a NaV1.7-dependent model of histamine-induced pruritus (itch) and additionally in a capsaicin-induced nociception model of pain without any confounding effect in open-field activity.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel/metabolism , Quinolones/chemistry , Sulfonamides/chemistry , Voltage-Gated Sodium Channel Blockers/chemistry , Analgesics/chemistry , Analgesics/pharmacokinetics , Analgesics/pharmacology , Animals , Capsaicin , Cell Line , Dogs , Histamine , Mice, Inbred C57BL , Molecular Docking Simulation , Pain/chemically induced , Pain/prevention & control , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Pruritus/chemically induced , Pruritus/prevention & control , Quinolones/administration & dosage , Quinolones/chemical synthesis , Quinolones/pharmacokinetics , Quinolones/pharmacology , Rats , Structure-Activity Relationship , Sulfonamides/administration & dosage , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacokinetics , Voltage-Gated Sodium Channel Blockers/pharmacology
6.
J Med Chem ; 59(6): 2794-809, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26942860

ABSTRACT

There has been significant interest in developing a transient receptor potential A1 (TRPA1) antagonist for the treatment of pain due to a wealth of data implicating its role in pain pathways. Despite this, identification of a potent small molecule tool possessing pharmacokinetic properties allowing for robust in vivo target coverage has been challenging. Here we describe the optimization of a potent, selective series of quinazolinone-based TRPA1 antagonists. High-throughput screening identified 4, which possessed promising potency and selectivity. A strategy focused on optimizing potency while increasing polarity in order to improve intrinsic clearance culminated with the discovery of purinone 27 (AM-0902), which is a potent, selective antagonist of TRPA1 with pharmacokinetic properties allowing for >30-fold coverage of the rat TRPA1 IC50 in vivo. Compound 27 demonstrated dose-dependent inhibition of AITC-induced flinching in rats, validating its utility as a tool for interrogating the role of TRPA1 in in vivo pain models.


Subject(s)
Nerve Tissue Proteins/antagonists & inhibitors , Oxadiazoles/chemical synthesis , Oxadiazoles/pharmacology , Purines/chemical synthesis , Purines/pharmacology , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Transient Receptor Potential Channels/antagonists & inhibitors , Animals , Biological Transport, Active , CHO Cells , Calcium Channels , Cricetulus , Dogs , Dose-Response Relationship, Drug , Drug Discovery , High-Throughput Screening Assays , Humans , In Vitro Techniques , Madin Darby Canine Kidney Cells , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Models, Molecular , Pain Measurement/drug effects , Rats , Structure-Activity Relationship , TRPA1 Cation Channel
7.
J Med Chem ; 59(6): 2328-42, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26812066

ABSTRACT

Deregulation of the receptor tyrosine kinase mesenchymal epithelial transition factor (MET) has been implicated in several human cancers and is an attractive target for small molecule drug discovery. Herein, we report the discovery of compound 23 (AMG 337), which demonstrates nanomolar inhibition of MET kinase activity, desirable preclinical pharmacokinetics, significant inhibition of MET phosphorylation in mice, and robust tumor growth inhibition in a MET-dependent mouse efficacy model.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyridones/chemical synthesis , Pyridones/pharmacology , Triazoles/chemical synthesis , Triazoles/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Crystallography, X-Ray , Drug Design , Drug Discovery , Humans , Mice , Models, Molecular , Pyridones/pharmacokinetics , Structure-Activity Relationship , Triazoles/pharmacokinetics , Xenograft Model Antitumor Assays
8.
Org Lett ; 18(1): 16-9, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26671035

ABSTRACT

Regioselective N-alkylation of 1,3-azoles is a valuable transformation. Organomagnesium reagents were discovered to be competent bases to affect regioselective alkylation of various 1,3-azoles. Counterintuitively, substitution selectively occurred at the more sterically hindered nitrogen atom. Numerous examples are provided, on varying 1,3-azole scaffolds, with yields ranging from 25 to 95%.


Subject(s)
Azoles/chemistry , Alkylation , Catalysis , Magnesium/chemistry , Molecular Structure , Organometallic Compounds/chemistry , Stereoisomerism
9.
Bioorg Med Chem Lett ; 24(15): 3464-8, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24953819

ABSTRACT

The transient receptor potential ankyrin 1 (TRPA1) channel is activated by noxious stimuli including chemical irritants and endogenous inflammatory mediators. Antagonists of this channel are currently being investigated for use as therapeutic agents for treating pain, airway disorders, and itch. A novel azabenzofuran series was developed that demonstrated in vitro inhibition of allyl isothiocyanate (AITC)-induced (45)Ca(2+) uptake with nanomolar potencies against both human and rat TRPA1. From this series, compound 10 demonstrated in vivo target coverage in an AITC-induced flinching model in rats while providing unbound plasma concentrations up to 16-fold higher than the TRPA1 rat IC50.


Subject(s)
Calcium Channel Blockers/pharmacology , Drug Design , Heterocyclic Compounds, 3-Ring/pharmacology , Nerve Tissue Proteins/antagonists & inhibitors , TRPC Cation Channels/antagonists & inhibitors , Transient Receptor Potential Channels/antagonists & inhibitors , Animals , Calcium Channel Blockers/chemical synthesis , Calcium Channel Blockers/chemistry , Calcium Channels/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/chemistry , Humans , Isothiocyanates/antagonists & inhibitors , Molecular Structure , Nerve Tissue Proteins/metabolism , Rats , Structure-Activity Relationship , TRPA1 Cation Channel , TRPC Cation Channels/metabolism , Transient Receptor Potential Channels/metabolism
10.
Bioorg Med Chem Lett ; 22(15): 4967-74, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22765895

ABSTRACT

mTOR is a critical regulator of cellular signaling downstream of multiple growth factors. The mTOR/PI3K/AKT pathway is frequently mutated in human cancers and is thus an important oncology target. Herein we report the evolution of our program to discover ATP-competitive mTOR inhibitors that demonstrate improved pharmacokinetic properties and selectivity compared to our previous leads. Through targeted SAR and structure-guided design, new imidazopyridine and imidazopyridazine scaffolds were identified that demonstrated superior inhibition of mTOR in cellular assays, selectivity over the closely related PIKK family and improved in vivo clearance over our previously reported benzimidazole series.


Subject(s)
Protein Kinase Inhibitors/chemistry , Pyridazines/chemistry , Pyridines/chemistry , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Benzimidazoles/chemistry , Binding Sites , Binding, Competitive , Crystallography, X-Ray , Drug Design , Drug Evaluation, Preclinical , Half-Life , Humans , Imidazoles/chemistry , Male , Mice , Microsomes, Liver/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Structure, Tertiary , Pyridazines/chemical synthesis , Pyridazines/pharmacokinetics , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Rats, Sprague-Dawley , Signal Transduction/drug effects , Structure-Activity Relationship , TOR Serine-Threonine Kinases/metabolism
11.
Bioorg Med Chem Lett ; 22(12): 4089-93, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22595176

ABSTRACT

Deregulation of the receptor tyrosine kinase c-Met has been implicated in several human cancers and is an attractive target for small molecule drug discovery. Herein, we report the discovery of a structurally diverse series of carbon-linked quinoline triazolopyridinones, which demonstrates nanomolar inhibition of c-Met kinase activity. This novel series of inhibitors exhibits favorable pharmacokinetics as well as potent inhibition of HGF-mediated c-Met phosphorylation in a mouse liver pharmacodynamic model.


Subject(s)
Antineoplastic Agents/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyridones/chemical synthesis , Quinolines/chemical synthesis , Triazoles/chemical synthesis , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Drug Discovery , Hepatocyte Growth Factor/metabolism , Humans , Male , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Models, Molecular , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/metabolism , Pyridones/pharmacology , Quinolines/pharmacology , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Triazoles/pharmacology
12.
J Med Chem ; 55(5): 1868-97, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22320327

ABSTRACT

As part of our effort toward developing an effective therapeutic agent for c-Met-dependent tumors, a pyrazolone-based class II c-Met inhibitor, N-(4-((6,7-dimethoxyquinolin-4-yl)oxy)-3-fluorophenyl)-1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (1), was identified. Knowledge of the binding mode of this molecule in both c-Met and VEGFR-2 proteins led to a novel strategy for designing more selective analogues of 1. Along with detailed SAR information, we demonstrate that the low kinase selectivity associated with class II c-Met inhibitors can be improved significantly. This work resulted in the discovery of potent c-Met inhibitors with improved selectivity profiles over VEGFR-2 and IGF-1R that could serve as useful tools to probe the relationship between kinase selectivity and in vivo efficacy in tumor xenograft models. Compound 59e (AMG 458) was ultimately advanced into preclinical safety studies.


Subject(s)
Aminopyridines/chemical synthesis , Antineoplastic Agents/chemical synthesis , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyrazoles/chemical synthesis , Aminopyridines/chemistry , Aminopyridines/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , Gastrins/metabolism , Humans , Male , Mice , Models, Molecular , Phosphorylation , Protein Conformation , Proto-Oncogene Proteins c-met/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazolones/chemical synthesis , Pyrazolones/chemistry , Pyrazolones/pharmacology , Rats , Receptor, IGF Type 1/antagonists & inhibitors , Stereoisomerism , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
13.
Bioorg Med Chem Lett ; 21(7): 2064-70, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21376583

ABSTRACT

mTOR is part of the PI3K/AKT pathway and is a central regulator of cell growth and survival. Since many cancers display mutations linked to the mTOR signaling pathway, mTOR has emerged as an important target for oncology therapy. Herein, we report the discovery of triazine benzimidazole inhibitors that inhibit mTOR kinase activity with up to 200-fold selectivity over the structurally homologous kinase PI3Kα. When tested in a panel of cancer cell lines displaying various mutations, a selective inhibitor from this series inhibited cellular proliferation with a mean IC(50) of 0.41 µM. Lead compound 42 demonstrated up to 83% inhibition of mTOR substrate phosphorylation in a murine pharmacodynamic model.


Subject(s)
Benzimidazoles/pharmacology , Drug Discovery , TOR Serine-Threonine Kinases/antagonists & inhibitors , Triazines/pharmacology , Benzimidazoles/chemistry , Cell Line, Tumor , Crystallography, X-Ray , Humans , Hydrogen Bonding , Inhibitory Concentration 50 , Models, Molecular , Structure-Activity Relationship , Triazines/chemistry
14.
Pain ; 149(1): 33-49, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20167427

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs) are longstanding targets for a next generation of pain therapeutics, but the nAChR subtypes that govern analgesia remain unknown. We tested a series of nicotinic agonists, including many molecules used or tried clinically, on a panel of cloned neuronal nAChRs for potency and selectivity using patch-clamp electrophysiology and a live cell-based fluorescence assay. Nonselective nicotinic agonists as well as compounds selective either for alpha4beta2 or for alpha7 nAChRs were then tested in the formalin and complete Freund's adjuvant models of pain. Nonselective nAChR agonists ABT-594 and varenicline were effective analgesics. By contrast, the selective alpha4beta2 agonist ispronicline and a novel alpha4beta2-selective potentiator did not appear to produce analgesia in either model. alpha7-selective agonists reduced the pain-related endpoint, but the effect could be ascribed to nonspecific reduction of movement rather than to analgesia. Neither selective nor nonselective alpha7 nicotinic agonists affected the release of pro-inflammatory cytokines in response to antigen challenge. Electrophysiological recordings from spinal cord slice showed a strong nicotine-induced increase in inhibitory synaptic transmission that was mediated partially by alpha4beta2 and only minimally by alpha7 subtypes. Taken with previous studies, the results suggest that agonism of alpha4beta2 nAChRs is necessary but not sufficient to produce analgesia, and that the spinal cord is a key site where the molecular action of nAChRs produces analgesia.


Subject(s)
Analgesics/administration & dosage , Hyperalgesia/drug therapy , Hyperalgesia/physiopathology , Nicotinic Agonists/administration & dosage , Pain Measurement/drug effects , Animals , Chronic Disease , Humans , Hyperalgesia/diagnosis , Male , Rats , Rats, Sprague-Dawley , Treatment Outcome
15.
Bioorg Med Chem Lett ; 19(22): 6307-12, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19819693

ABSTRACT

Deregulation of the receptor tyrosine kinase c-Met has been implicated in several human cancers and is an attractive target for small molecule drug discovery. We previously showed that O-linked triazolopyridazines can be potent inhibitors of c-Met. Herein, we report the discovery of a related series of N-linked triazolopyridazines which demonstrate nanomolar inhibition of c-Met kinase activity and display improved pharmacodynamic profiles. Specifically, the potent time-dependent inhibition of cytochrome P450 associated with the O-linked triazolopyridazines has been eliminated within this novel series of inhibitors. N-linked triazolopyridazine 24 exhibited favorable pharmacokinetics and displayed potent inhibition of HGF-mediated c-Met phosphorylation in a mouse liver PD model. Once-daily oral administration of 24 for 22days showed significant tumor growth inhibition in an NIH-3T3/TPR-Met xenograft mouse efficacy model.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Apoptosis/physiology , Neovascularization, Physiologic/physiology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Animals , Cell Survival , Humans , Mice , Mice, Nude , Phosphorylation , Xenograft Model Antitumor Assays
16.
Chem Res Toxicol ; 21(11): 2216-22, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18837519

ABSTRACT

AMG 458 {1-(2-hydroxy-2-methylpropyl)-N-[5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl]-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide} is a potent, selective inhibitor of c-Met, a receptor tyrosine kinase that is often deregulated in cancer. AMG 458 was observed to bind covalently to liver microsomal proteins from rats and humans in the absence of NADPH. When [(14)C]AMG 458 was incubated with liver microsomes in the presence of glutathione and N-acetyl cysteine, thioether adducts were detected by radiochromatography and LC/MS/MS analysis. These adducts were also formed upon incubation of AMG 458 with glutathione and N-acetyl cysteine in buffers at pH 7.4. In vivo, the thioether adducts were detected in bile and urine of bile duct-cannulated rats dosed with [(14)C]AMG 458. The two adducts were isolated, and their structures were determined by MS/MS and NMR analysis. The identified structures resulted from a thiol displacement reaction to yield a quinoline thioether structure and the corresponding hydroxyaryl moiety. The insights gained from elucidating the mechanism of adduct formation led to the design of AMG 458 analogues that exhibited eliminated or reduced glutathione adduct formation in vitro and in vivo.


Subject(s)
Aminopyridines/metabolism , Glutathione/metabolism , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyrazoles/metabolism , Quinolines/metabolism , Aminopyridines/chemistry , Animals , Glutathione/chemistry , Humans , Magnetic Resonance Spectroscopy , Male , Microsomes, Liver/metabolism , Protein Binding , Pyrazoles/chemistry , Quinolines/chemistry , Rats , Rats, Sprague-Dawley
17.
Bioorg Med Chem Lett ; 18(19): 5209-12, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18789861

ABSTRACT

The discovery of a series of small molecule alpha4beta2 nAChR potentiators is reported. The structure-activity relationship leads to potent compounds selective against nAChRs including alpha3beta2 and alpha3beta4 and optimized for CNS penetrance. Compounds increased currents through recombinant alpha4beta2 nAChRs, yet did not compete for binding with the orthosteric ligand cytisine. High potency and efficacy on the rat channel combined with good PK properties will allow testing of the alpha4beta2 potentiator mechanism in animal models of disease.


Subject(s)
Central Nervous System/drug effects , Nicotinic Agonists/pharmacology , Piperidines/chemical synthesis , Piperidines/pharmacology , Receptors, Nicotinic/drug effects , Animals , Combinatorial Chemistry Techniques , Disease Models, Animal , Humans , Molecular Structure , Piperidines/chemistry , Rats , Receptors, Nicotinic/chemistry , Structure-Activity Relationship
18.
Bioorg Med Chem Lett ; 18(20): 5643-7, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18805006

ABSTRACT

The synthesis and structure-activity relationship of a series of carbamate potentiators of alpha4beta2 nAChR is reported herein. These compounds were highly selective for alpha4beta2 over other nAChR subtypes. In addition, compounds increased the response of alpha4beta2 nAChRs to acetylcholine, as measured with patch-clamp electrophysiology.


Subject(s)
Chemistry, Pharmaceutical/methods , Receptors, Nicotinic/chemistry , Acetylcholine/chemistry , Calcium/chemistry , Carbamates/chemistry , Drug Design , Humans , Models, Chemical , Nervous System/metabolism , Neurons/metabolism , Patch-Clamp Techniques , Pyrazoles/chemistry , Pyridines/chemistry , Receptors, Nicotinic/metabolism , Structure-Activity Relationship
19.
J Med Chem ; 51(10): 2879-82, 2008 May 22.
Article in English | MEDLINE | ID: mdl-18426196

ABSTRACT

Tumorigenesis is a multistep process in which oncogenes play a key role in tumor formation, growth, and maintenance. MET was discovered as an oncogene that is activated by its ligand, hepatocyte growth factor. Deregulated signaling in the c-Met pathway has been observed in multiple tumor types. Herein we report the discovery of potent and selective triazolopyridazine small molecules that inhibit c-Met activity.


Subject(s)
Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyridazines/chemical synthesis , Triazoles/chemical synthesis , Animals , Crystallography, X-Ray , Hepatocyte Growth Factor/physiology , In Vitro Techniques , Mice , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure , Phosphorylation , Proto-Oncogene Proteins c-met/chemistry , Proto-Oncogene Proteins c-met/metabolism , Pyridazines/chemistry , Pyridazines/pharmacokinetics , Pyridazines/pharmacology , Rats , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacokinetics , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...